河南快3了|河南快3了
当前位置:首页 > 技术支持 > 常见问题
 
常见问题
下载中心
 
常见问题
LED芯片技术及国内外差异分析
答:

芯片,是LED的核心部件。目前国内外有很多LED芯片厂家,然芯片分类没有统一的标准,若按功率分类,则有大功率和中小功率之分;若按颜色分类,则主要为红色、绿色、蓝色三种;若按形状分类,一般分为方片、圆片两种;若按电压分类,则分为低压直流芯片和高压直流芯片。国内外芯片技术对比方面,国外芯片技术新,国内芯片重产量不重技术。

衬底材料和晶圆生长技术成关键

目前,LED芯片技术的发展关键在于衬底材料和晶圆生长技术。除了传统的蓝宝石、硅(Si)、碳化硅(SiC)衬底材料以外,氧化锌(ZnO)和氮化镓(GaN)等也是当前LED芯片研究的焦点。目前,市面上大多采用蓝宝石或碳化硅衬底来外延生长宽带隙半导体氮化镓,这两种材料价格都非常昂贵,且都为国外大企业所垄断,而硅衬底的价格比蓝宝石和碳化硅衬底便宜得多,可制作出尺寸更大的衬底,提高MOCVD的利用率,从而提高管芯产率。所以,为突破国际专利壁垒,中国研究机构和LED企业从硅衬底材料着手研究。

但问题是,硅与氮化镓的高质量结合是LED芯片的技术难点,两者的晶格常数和热膨胀系数的巨大失配而引起的缺陷密度高和裂纹等技术问题长期以来阻碍着芯片领域的发展。

无疑,从衬底角度看,主流衬底依然是蓝宝石和碳化硅,但硅已经成为芯片领域今后的发展趋势。对于价格战相对严重的中国来说,硅衬底更有成本和价格优势:硅衬底是导电衬底,不但可以减少管芯面积,还可以省去对氮化镓外延层的干法腐蚀步骤,加之,硅的硬度比蓝宝石和碳化硅低,在加工方面也可以节省一些成本。

目前LED产业大多以2英寸或4英寸的蓝宝石基板为主,如能采用硅基氮化镓技术,至少可节省75%的原料成本。据日本三垦电气公司估计,使用硅衬底制作大尺寸蓝光氮化镓LED的制造成本将比蓝宝石衬底和碳化硅衬底低90%。

国内外芯片技术差异大

在国外,欧司朗、美国普瑞、日本三垦等一流企业已经在大尺寸硅衬底氮化镓基LED研究上取得突破,飞利浦、韩国三星、LG、日本东芝等国际LED巨头也掀起了一股硅衬底上氮化镓基LED的研究热潮。其中,在2011年,美国普瑞在8英寸硅衬底上研发出高光效氮化镓基LED,取得了与蓝宝石及碳化硅衬底上顶尖水平的LED器件性能相媲美的发光效率160lm/W;在2012年,欧司朗成功生产出6英寸硅衬底氮化镓基LED。

反观中国内地,LED芯片企业技术的突破点主要还是提高产能和大尺寸蓝宝石晶体生长技术,除了晶能光电在2011年成功实现2英寸硅衬底氮化镓基大功率LED芯片的量产外,中国芯片企业在硅衬底氮化镓基LED研究上无大的突破,目前中国内地LED芯片企业还是主攻产能、蓝宝石衬底材料及晶圆生长技术,三安光电德豪润达、同方股份等内地芯片巨头也大多在产能上取得突破。

LED显示屏的像素知识点解析
答:

像素是用来计算数码影像的一种单位,如同摄影的相片一样,数码影像也具有连续性的浓淡阶调,若把影像放大数倍,会发现这些连续色调其实是由许多色彩相近的小方点所组成,这些小方点就是构成影像的最小单位“像素”,这种最小的图形的单元能在屏幕上显示通常是单个的染色点。

根据色彩原理,知道红R、绿G、蓝B被称为三基色。这三种颜色可以组合得到从黑色到白色的任意颜色。LED显示屏分类中,有单色显示屏、双色显示屏、全彩显示屏。单色相对简单,只需要选择三基色中的任意一种颜色即可实现单色显示。实际应用中,选择红色LED灯比较多。这样的话,一颗红色LED灯即为一个像素。

双色显示屏与单色显示屏大同小异,只要选择三基色中的任意两种颜色即可实现双色。实际应用中,多选择红色与绿色。当红色与绿色同时亮时,可以实现黄色。因此,双色显示屏可以实现红、绿、黄3种颜色。

单色显示屏LED照明是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。

全彩LED显示屏因为要表现出多种多样的色彩,因此需要能表现从黑色到白色之间的不同色彩。因此全彩LED显示屏需要红、绿、蓝3颗灯一起构成一个像素,才能表现出多种多样的色彩。全彩LED显示屏中,又分为实像素显示屏和虚拟像素显示屏。两者因为采用的显示技术不一样,因此像素点构成的方式也不一样。

虚像素显示屏采用LED复用虚拟像素技术,相邻的LED发光管可以经过上、下、左、右4次组合构成一个发光管;实像素显示屏采用的是正常三基色构成一个像素技术。虚拟像素的点是分散的,实像素的点是凝聚的。虚拟像素的发光点在灯管间,实像素的发光点在灯管上。

下面一起来了解下LED显示屏像素技术 :

1.动态像素技术:将一个像素拆分为若干个彼此独立的LED单元。每一个led单元以时分复用的方式再现若干个相邻像素的对应基色信息。

2.虚拟像素技术:在显示系统中,当显示的信息向某个方向以一定的方式滚动时,利用人的短暂视觉效应特点,在相邻的两个像素之间会产生一系列移动的,物理上不存在的虚拟像素,从而调整每一个LED单管,以增强LED全彩显示屏的分辨率达到最佳的图像效果,理论是可以提高图像分辨率,一般是4倍。

3.像素共享技术:显示终端一个完整的独立像素以时分复用方式,被信号源中多个相邻像素的信息循环刷新。以可以理解信号源中多个像素以时分复用的方式共享显示终端的一个完整的独立像素。

LED芯片使用过程中经常遇到的问题
答:

      1.正向电压降低,暗光

      A:一种是电极与发光材料为欧姆接触,但接触电阻大,主要由材料衬底低浓度或电极缺损所致。

      B:一种是电极与材料为非欧姆接触,主要发生在芯片电极制备过程中蒸发第一层电极时的挤压印或夹印,分布位置。

另外封装过程中也可能造成正向压降低,主要原因有银胶固化不充分,支架或芯片电极沾污等造成接触电阻大或接触电阻不稳定。 正向压降低的芯片在固定电压测试时,通过芯片的电流小,从而表现暗点,还有一种暗光现象是芯片本身发光效率低,正向压降正常。

      2.难压焊:(主要有打不粘,电极脱落,打穿电极)

      A:打不粘:主要因为电极表面氧化或有胶

      B:有与发光材料接触不牢和加厚焊线层不牢,其中以加厚层脱落为主。

      C:打穿电极:通常与芯片材料有关,材料脆且强度不高的材料易打穿电极,一般GAALAS材料(如高红,红外芯片)较GAP材料易打穿电极,

      D:压焊调试应从焊接温度,超声波功率,超声时间,压力,金球大小,支架定位等进行调整。

      3.发光颜色差异:

      A:同一张芯片发光颜色有明显差异主要是因为外延片材料问题,ALGAINP四元素材料采用量子结构很薄,生长是很难保证各区域组分一致。(组分决定禁带宽度,禁带宽度决定波长)。

      B:GAP黄绿芯片,发光波长不会有很大偏差,但是由于人眼对这个波段颜色敏感,很容易查出偏黄,偏绿。由于波长是外延片材料决定的,区域越小,出现颜色偏差概念越小,故在M/T作业中有邻近选取法。

      C:GAP红色芯片有的发光颜色是偏橙黄 色,这是由于其发光机理为间接跃进。受杂质浓度影响,电流密度加大时,易产生杂质能级偏移和发光饱和,发光是开始变为橙黄 色。

      4.闸流体效应:

      A:是发光二极管在正常电压下无法导通,当电压加高到一定程度,电流产生突变。

      B:产生闸流体现象原因是发光材料外延片生长时出现了反向夹层,有此现象的LED在IF=20MA时测试的正向压降有隐藏性,在使用过程是出于两极电压不够大,表现为不亮,可用测试信息仪器从晶体管图示仪测试曲线,也可以通过小电流IF=10UA下的正向压降来发现,小电流下的正向压降明显偏大,则可能是该问题所致。

      5.反向漏电:

      A:原因:外延材料,芯片制作,器件封装,测试一般5V下反向漏电流为10UA,也可以固定反向电流下测试反向电压。

      B:不同类型的LED反向特性相差大:普绿,普黄芯片反向击穿可达到一百多伏,而普芯片则在十几二十伏之间。

      C:外延造成的反向漏电主要由PN结内部结构缺陷所致,芯片制作过程中侧面腐蚀不够或有银胶丝沾附在测面,严禁用有机溶液调配银胶。以防止银胶通过毛细现象爬到结区。

LED芯片的制造工艺流程及检测项目分析
答:

      芯片是LED最关键的原物料,其质量的好坏,直接决定了LED的性能。特别是用于汽车或固态照明设备的高端LED,绝对不容许出现缺陷,也就是说此类设备的可靠性必须非常高。然而,LED封装厂由于缺乏芯片来料检验的经验和设备,通常不对芯片进行来料检验,在购得不合格的芯片后,往往只能吃哑巴亏。金鉴检测在累积了大量LED失效分析案例的基础上,推出LED芯片来料检验的业务,通过运用高端分析仪器鉴定芯片的优劣情况。这一检测服务能够作为LED封装厂/芯片代理厂来料检验的补充,防止不良品芯片入库,避免因芯片质量问题造成灯珠的整体损失。

      检测项目:

      一、芯片各项性能参数测试

      Wd(主波长)、Iv(亮度)、Vf(顺向电压)、Ir(漏电)、ESD(抗静电能力)等芯片的光电性能测试,金鉴作为第三方检测机构能够鉴定供应商提供的产品数据是否达标。

      二、芯片缺陷查找

      检测内容:

      1.芯片尺寸测量,芯片尺寸及电极大小是否符合要求,电极图案是否完整。

      2.芯片是否存在焊点污染、焊点破损、晶粒破损、晶粒切割大小不一、晶粒切割倾斜等缺陷。

      LED芯片的受损会直接导致LED失效,因此提高LED芯片的可靠性至关重要。蒸镀过程中有时需用弹簧夹固定芯片,因此会产生夹痕。黄光作业若显影不完全及光罩有破洞会使发光区有残余多出的金属。晶粒在前段制程中,各项制程如清洗、蒸镀、黄光、化学蚀刻、熔合、研磨等作业都必须使用镊子及花篮、载具等,因此会有晶粒电极刮伤的情况发生。

      芯片电极对焊点的影响:芯片电极本身蒸镀不牢靠,导致焊线后电极脱落或损伤;芯片电极本身可焊性差,会导致焊球虚焊;芯片存储不当会导致电极表面氧化,表面玷污等等,键合表面的轻微污染都可能影响两者间的金属原子扩散,造成失效或虚焊。

      3.芯片外延区的缺陷查找

      LED外延片在高温长晶过程中,衬底、MOCVD反应腔内残留的沉积物、外围气体和Mo源都会引入杂质,这些杂质会渗入磊晶层,阻止氮化镓晶体成核,形成各种各样的外延缺陷,最终在外延层表面形成微小坑洞,这些也会严重影响外延片薄膜材料的晶体质量和性能。金鉴检测研发出快速鉴定芯片外延区缺陷的检测方法,能够低成本、快速地检测出芯片外延层80%的外延缺陷,帮助LED客户选择高质量的外延片、芯片。

      4.芯片工艺和清洁度观察

电极加工是制作LED芯片的关键工序,包括清洗、蒸镀、黄光、化学蚀刻、熔合、研磨,会接触到很多化学清洗剂,如果芯片清洗不够干净,会使有害化学物残余。这些有害化学物会在LED通电时,与电极发生电化学反应,导致死灯、光衰、暗亮、发黑等现象出现。因此,鉴定芯片化学物残留对LED封装厂来说至关重要。

      案例分析(一):

      某客户红光灯珠发现暗亮问题,但一直找不出原因,委托金鉴分析失效的原因。金鉴经过一系列仪器分析排除封装原因后,对供应商提供的裸晶进行检测,发现每一个芯片的发光区域均有面积不等的污染物,能谱分析结果显示该污染物包含C、O两种元素,表明污染物为有机物。我们建议客户注重对芯片厂商的生产工艺规范和车间环境的考核,并加强对芯片的来料检验。

      案例分析(二):

      某客户生产的一批灯珠出现漏电问题,委托金鉴查找原因。金鉴通过扫描电镜鉴定这批灯珠漏电原因为静电击穿,并对供应商提供的裸晶进行检测,发现芯片外延层表面有大量黑色空洞,这些缺陷表明外延层晶体质量较差,PN结内部存在缺陷。空洞的发现,帮助客户明确责任事故的负责方,替客户挽回损失。

注:LED芯片的制造工艺流程

      LED芯片的制造工艺流程图

      外延片→清洗→镀透明电极层→透明电极图形光刻→腐蚀→去胶→平台图形光刻→干法刻蚀→去胶→退火→SiO2沉积→窗口图形光刻→SiO2腐蚀→去胶→N极图形光刻→预清洗→镀膜→剥离→退火→P极图形光刻→镀膜→剥离→研磨→切割→芯片→成品测试。

      在生长成外延片后,下一步就开始对LED外延片做电极(P极,N极),接着就开始用激光机或钻石刀切割LED外延片,制造成芯片后,然后在晶圆上的不同位置抽取九个点做参数测试。这主要是对电压、波长、亮度进行测试,符合正常出货标准参数的晶圆片继续下一步的操作,不符合要求的,就放在一边另行处理。晶圆切割成芯片后,需要100%的目检(VI/VC),操作者要在放大30倍数的显微镜下进行目测。接着使用全自动分类机根据不同的电压、波长、亮度的预测参数对芯片进行全自动化挑选、测试和分类。最后对LED芯片进行检查(VC)和贴标签。芯片类型、批号、数量和光电测量统计数据记录在标签上,附在蜡光纸的背面。蓝膜上的芯片将做最后的目检测试,目检标准与第一次相同,确保芯片排列整齐和质量合格。这就是LED芯片的制造流程。

解答八问 让你读透LED芯片
答:

      1、LED芯片的制造流程是怎样的?

      LED芯片制造主要是为了制造有效可靠的低欧姆接触电极,并能满足可接触材料之间最小的压降及提供焊线的压垫,同时尽可能多地出光。渡膜工艺一般用真空蒸镀方法,其主要在1.33×10?4Pa高真空下,用电阻加热或电子束轰击加热方法使材料熔化,并在低气压下变成金属蒸气沉积在半导体材料表面。一般所用的P型接触金属包括AuBe、AuZn等合金,N面的接触金属常采用AuGeNi合金。镀膜后形成的合金层还需要通过光刻工艺将发光区尽可能多地露出来,使留下来的合金层能满足有效可靠的低欧姆接触电极及焊线压垫的要求。光刻工序结束后还要通过合金化过程,合金化通常是在H2或N2的保护下进行。合金化的时间和温度通常是根据半导体材料特性与合金炉形式等因素决定。当然若是蓝绿等芯片电极工艺还要复杂,需增加钝化膜生长、等离子刻蚀工艺等。

      2、LED芯片制造工序中,哪些工序对其光电性能有较重要的影响?

      一般来说,LED外延生产完成之后她的主要电性能已定型,芯片制造不对其产甞核本性改变,但在镀膜、合金化过程中不恰当的条件会造成一些电参数的不良。比如说合金化温度偏低或偏高都会造成欧姆接触不良,欧姆接触不良是芯片制造中造成正向压降VF偏高的主要原因。在切割后,如果对芯片边缘进行一些腐蚀工艺,对改善芯片的反向漏电会有较好的帮助。这是因为用金刚石砂轮刀片切割后,芯片边缘会残留较多的碎屑粉末,这些如果粘在LED芯片的PN结处就会造成漏电,甚至会有击穿现象。另外,如果芯片表面光刻胶剥离不干净,将会造成正面焊线难与虚焊等情况。如果是背面也会造成压降偏高。在芯片生产过程中通过表面粗化、划成倒梯形结构等办法可以提高光强。

      3、LED芯片为什么要分成不同尺寸?尺寸大小对LED光电性能有哪些影响?

      LED芯片大小根据功率可分为小功率芯片、中功率芯片和大功率芯片。根据客户要求可分为单管级、数码级、点阵级以及装饰照明等类别。至于芯片的具体尺寸大小是根据不同芯片生产厂家的实际生产水平而定,没有具体的要求。只要工艺过关,芯片小可提高单位产出并降低成本,光电性能并不会发生根本变化。芯片的使用电流实际上与流过芯片的电流密度有关,芯片小使用电流小,芯片大使用电流大,它们的单位电流密度基本差不多。如果10mil芯片的使用电流是20mA的话,那么40mil芯片理论上使用电流可提高16倍,即320mA。但考虑到散热是大电流下的主要问题,所以它的发光效率比小电流低。另一方面,由于面积增大,芯片的体电阻会降低,所以正向导通电压会有所下降。

      4、LED大功率芯片一般指多大面积的芯片?为什么?

      用于白光的LED大功率芯片一般在市场上可以看到的都在40mil左右,所谓的大功率芯片的使用功率一般是指电功率在1W以上。由于量子效率一般小于20%大部分电能会转换成热能,所以大功率芯片的散热很重要,要求芯片有较大的面积。

      5、制造GaN外延材料的芯片工艺和加工设备与GaP、GaAs、InGaAlP相比有哪些不同的要求?为什么?

      普通的LED红黄芯片和高亮四元红黄芯片的基板都采用GaP、GaAs等化合物半导体材料,一般都可以做成N型衬底。采用湿法工艺进行光刻,最后用金刚砂轮刀片切割成芯片。GaN材料的蓝绿芯片是用的蓝宝石衬底,由于蓝宝石衬底是绝缘的,所以不能作为LED的一个极,必须通过干法刻蚀的工艺在外延面上同时制作P/N两个电极并且还要通过一些钝化工艺。由于蓝宝石很硬,用金刚砂轮刀片很难划成芯片。它的工艺过程一般要比GaP、GaAs材料的LED多而复杂。

      6、“透明电极”芯片的结构与它的特点是什么?

      所谓透明电极一是要能够导电,二是要能够透光。这种材料现在最广泛应用在液晶生产工艺中,其名称叫氧化铟锡,英文缩写ITO,但它不能作为焊垫使用。制作时先要在芯片表面做好欧姆电极,然后在表面覆盖一层ITO再在ITO表面镀一层焊垫。这样从引线上下来的电流通过ITO层均匀分布到各个欧姆接触电极上,同时ITO由于折射率处于空气与外延材料折射率之间,可提高出光角度,光通量也可增加。

      7、用于半导体照明的芯片技术的发展主流是什么?

      随着半导体LED技术的发展,其在照明领域的应用也越来越多,特别是白光LED的出现,更是成为半导体照明的热点。但是关键的芯片、封装技术还有待提高,在芯片方面要朝大功率、高光效和降低热阻方面发展。提高功率意味着芯片的使用电流加大,最直接的办法是加大芯片尺寸,现在普遍出现的大功率芯片都在1mm×1mm左右,使用电流在350mA.由于使用电流的加大,散热问题成为突出问题,现在通过芯片倒装的方法基本解决了这一文题。随着LED技术的发展,其在照明领域的应用会面临一个前所未有的机遇和挑战。

      8、什么是“倒装芯片(Flip Chip)”?它的结构如何?有哪些优点?

      蓝光LED通常采用Al2O3衬底,Al2O3衬底硬度很高、热导率和电导率低,如果采用正装结构,一方面会带来防静电问题,另一方面,在大电流情况下散热也会成为最主要的问题。同时由于正面电极朝上,会遮掉一部分光,发光效率会降低。大功率蓝光LED通过芯片倒装技术可以比传统的封装技术得到更多的有效出光。

      现在主流的倒装结构做法是:首先制备出具有适合共晶焊接电极的大尺寸蓝光LED芯片,同时制备出比蓝光LED芯片略大的硅衬底,并在上面制作出供共晶焊接的金导电层及引出导线层(超声金丝球焊点)。然后,利用共晶焊接设备将大功率蓝光LED芯片与硅衬底焊接在一起。这种结构的特点是外延层直接与硅衬底接触,硅衬底的热阻又远远低于蓝宝石衬底,所以散热的问题很好地解决了。由于倒装后蓝宝石衬底朝上,成为出光面,蓝宝石是透明的,因此出光问题也得到解决。

LED显示屏及其LED驱动芯片技术分析
答:

      LED显示屏是上世纪80年代后期在全球迅速发展起来的新型显示产品,以可靠性高、亮度高、使用寿命长、环境适应能力强、性价比高、功耗小、耐冲击、性能稳定等特点,迅速成长为平板显示的主流产品。中国 LED显示屏产业起步于上世纪90年代初,发展迅速;进入21世纪以来, LED显示屏产业面临良好的市场发展机遇;一方面,需求不断扩大,电子政务、政务公开、公众信息展示等需求旺盛;另一方面,技术的进步为LED显示屏产品市场扩展和开创新的应用领域提供了创新技术支持,再一方面,奥运会和世博会的契机,加快了该产业的发展。根据市场分析报告2007-2010年,中国LED显示屏市场年均复合增长率将达到15.1%。

LED显示屏及其LED驱动芯片技术分析

    LED显示屏的最大特点其制造不受面积限制,可达几十甚至几百平方米以上,应用于室内/室外的各种公共场合显示文字、图形、图像、动画、视频图像等各种信息,具有较强的广告渲染力和震撼力。其高亮度、全彩化、便捷快速的错误侦查及LED亮度的自由调节是市场的发展趋势。

      LED显示屏的分类

LED屏幕按使用环境分为室内LED屏幕和室外LED屏幕;LED屏幕按显示颜色分为单基色LED屏幕,双基色LED屏幕和全彩色LED屏幕;LED屏幕按灰度级又可分为16、32、64、128、256级灰度LED屏幕等;LED屏幕按显示性能分为文本LED屏幕、图文LED屏幕、同步视频LED屏幕,电视视频LED屏幕等。

LED显示屏的系统组成架构 
      LED显示屏的系统组成架构参见图1。

      显示单元:这是LED显示屏幕的主体部分,由发光材料及驱动电路构成。室内屏幕就是各种规格的单元显示板,室外屏幕就是单元箱体。

      主控制器:作用是将输入的RGB数字视频信号缓冲,灰度变换,重新组织,并产生各种控制信号。

      开关电源:用途是将220V交流电变为各种直流电提供给各种电路。

      传输电缆:主控仪产生的显示资料及各种控制信号由双绞线电缆传输至屏幕本体。

      扫描控制器:该电路板的功能是资料缓冲,产生各种扫描信号以及占空比灰度控制信号。

      专用显示卡及多媒体卡(视频卡):LED全彩屏专用显示卡除了具有电脑显示卡的基本功能外,还同时输出数字RGB信号及行、场、消隐等信号给主控仪。多媒体卡除了以上功能外还可将输入的模拟Video信号变为数字RGB信号(即视频采集)。

      其他信号源及其外接装置:包括电脑、电视机、蓝光、DVD、VCD、摄录像机等。

      LED显示屏用LED驱动产品介绍

      LED显示屏作为一项高科技产品引起了人们的高度重视,采用计算机控制,将光、电融为一体的智能全彩显示屏已经在广泛领域得到应用。其像素点采用LED发光二极管,将许多发光二极管以点阵方式排列起来,构成LED阵列,进而构成LED屏幕。通过不同的LED驱动方式,可得到不同效果的图像。因此LED驱动芯片的优劣,对LED显示屏的显示质量起着重要的作用。LED驱动芯片可分为通用芯片和专用芯片。

      通用芯片一般用于LED显示屏的低端产品,如户内的单、双色屏等。最常用的通用芯片是74HC595,具有8位锁存、串一并移位寄存器和三态输出功能。每路最大可输出35mA的非恒流的电流。

      由于LED是电流特性器件,即在饱和导通的前提下,其亮度随着电流大小的变化而变化,不随着其两端电压的变化而变化。专用芯片的最大特点是提供恒流源输出,保证LED的稳定驱动,消除LED的闪烁现象。具有输出电流大、恒流等特点,适用于要求大电流、高画质的场合,如户外全彩屏、室内全彩屏等。

      LED的关键指标包括:
      最大输出电流:目前主流的恒流源LED驱动芯片最大输出电流多为每通道90mA左右。每通道同时输出恒定电流的最大值对显示屏更有意义,因为在白平衡状态下,要求每通道都同时输出恒流电流。

      恒流输出通道数:恒流源输出通道有8位和16位两种规格,现在16位占主流,其主要优势在于减少了芯片尺寸,便于LED驱动板(PCB)布线,特别是对于点间距较小的LED驱动板更有利。

      精确的电流输出:一种是同一个芯片通道间电流误差值;另一种是不同芯片间输出电流误差值。精确的电流输出是个很关键的参数,对LED显示屏的显示均匀性影响很大。误差越大,显示均匀性越差,很难使屏体达到白平衡。目前主流恒流源芯片的位间(bit to bit)电流误差一般在±3%以内,片间(chip to chip )电流误差在±6%以内。

数据移位时钟:其决定了显示数据的传输速度,是影响显示屏的更新速率的关键指标。作为大尺寸显示器件,显示刷新率应该在85Hz以上,才能保证稳定的画面(无扫描闪烁感)。较高的数据移位时钟是显示屏获取高刷新率画面的基础。目前主流恒流源驱动芯片移位时钟频率一般都在15MHz~25MHz以上。




LED显示屏刷新率、灰度等级及色彩表现力分析
答:

      随着LED晶粒价格大幅下降,高密度小间距LED显示屏成本明显地降低,各家LED显示屏制造商纷纷投入P4以下的显示屏设计与生产。在许多室内的应用中,开始取代DLP和LCD拼墙的应用,例如:监控中心或应用于公共场所的显示系统,如机场、商场,最近更是在饭店宴会厅或会议室内看到高密度小间距LED显示屏的应用。相较于DLP和LCD拼墙,LED显示屏的优点有:

      一、尺寸可任意拼接,且无拼接缝;

      二、色彩对比度高;

      三、可视角度大;

      四、使用寿命长。

      未来市场上将掀起一波高密度小间距LED显示屏替换DLP和LCD拼墙的浪潮。唯受限于PCB面积,高密度小间距LED显示屏必需采用动态屏的设计,而且扫瞄数可能高达1/16扫至1/32扫。聚积认为高密度小间距LED显示屏的最佳解是采用内建缓存的SPWM驱动芯片。例如:P4的LED显示屏采用1/8扫,P2.5的LED显示屏采用1/16扫,P1.5以下更是必须采用1/32扫。如此才能同时满足视觉刷新率高于1000Hz、灰度等级大于14比特及发光效率大于90%*注,的三项要求。再配合驱动芯片内建的预充电功能,达到消除残影的效果。

      高密度小间距LED显示屏凭借其在室内显示时的技术实力,一步步蚕食着传统的DLP背投所占据的室内中、高端显示市场。相比于DLP、LCD、PDP等拼接方式,室内高密度小间距LED显示屏具有整屏完全无缝拼接,不存在各单元亮度衰减不一致、颜色漂移不一致的问题,逐点可调、可校正,动态刷新频率更高,色彩还原更好,灰度等级更高,寿命更长等优势, 

      随着LED显示屏的密度越来越高、间距越来越小、像素点越来越高,从几百万像素点到三千万像素点,使得显示屏工程项目的难度也越来越大,有的户外扫描屏一次性需要16通道驱动IC几百万片,再加上驱动IC的生产、控制器调试、安装等等,这些都对驱动IC的品质和厂商交货期提出了非常高的要求。LED显示屏整体性能的可靠性能够得到保证,其驱动IC的可靠性也要得到提升,我们设计的LED驱动IC提高了管脚的ESD防护性能,严格控制通道和通道之间的精度以及片与片之间的精度,并且在降低LED显示屏能耗方面我们拥有的专利低能耗驱动方案是一大亮点。

      高密度小间距LED显示屏是产业发展的热点,但是,其更高的刷新率、灰度等级及色彩表现力都是一大挑战,现在很多室内室外屏都采用了高刷新率、高画质视频播放,为此LED驱动IC就需要进一步提高其电流精度、分辨率、刷新率,而PWM技术能够提高数据传输频率和灰度控制时钟频率,支持额外点校正和全局亮度调整,能够使影像色彩更加丰富,画质更加逼真。




LED显示屏驱动芯片残影问题分析
答:

      残影问题多来自于动态屏的设计,当驱动芯片每个管脚仅驱动一个颜色的LED时,称之为静态屏;而每个管脚仅驱动二个或二个以上颜色的LED时,搭配P三极管时序切时,称之为动态屏。例如,每个管脚仅驱动八个LED时,通常称为1/8扫。一般而言,使用多动态屏的设计目的有二:一为节省LED电源驱动芯片成本,二为高密度小间距LED显示屏PCB无法容下太多的驱动芯片。当扫瞄数越高,残影的问题越严重。而残影可分为上残影和下残影,解决上残影问题,可藉由控制器的时序控制,将行上的寄生电荷泄放掉;为解决下残影问题,则需驱动芯片具备预充电的功能,也包含了某些基本款的驱动芯片。无论消除上残影和下残影,都需控制器搭配才能达到最佳效果,但是具备预充电基本款的驱动芯片的下残影消除时间是无法被精准控制的。再者,动态屏的设计的缺点还有视觉刷新率比静态屏设计呈等比例降低,基本款的驱动芯片若要弥补视觉刷新率降低的缺点,就得必须牺牲灰阶和亮度,如此就无法满足LED显示屏的黄金比例,高视觉刷新率,高灰度等级和高发光效率。根本的解决办法,是采用具备预充电功能的SPWM驱动芯片,因为下残影消除时间可以被控制,并且SPWM驱动芯片可以同时满足高视觉刷新率,高灰度等级和高发光效率。以1/16扫的设计为例,驱动芯片数量已下降至静态屏的1/16,在大屏中所占的成本比例更是下降,相较于LED灯珠的成本更是微乎其微,原先基本款的驱动芯片和SPWM驱动芯片的价差已是无足轻重,但是却能比基本款的驱动芯片有较佳的性能与用户经验。

      在LED显示屏的客户端应用中,LED动态扫描屏最常见的问题就是——“拖影毛毛虫”现象。要解决“拖影”现象,从IC的角度来看,关键在于当完成前一行的动态扫描之后,如何在后一行扫描开始时尽快将能量释放掉。而要解决“毛毛虫”现象,则是在列的方向上,解决LED的漏电、短路

      我司产品产品内部集成了恒定电荷吸收电路,扫描线输出下降沿可以达到一个微秒左右,对行扫描线进行可控放电,不但在放电后输出端可控制为高阻态能够消除“拖影”现象,极大的提高了刷新率,而且同时还能消除由于LED漏电、短路造成的“毛毛虫”现象。




LED显示屏驱动芯片存在问题分析
答:

LED驱动芯片可分为通用芯片和专用芯片。通用芯片一般用于LED显示屏的低端产品,如户内的单、双色屏等。最常用的通用芯片是74HC595,具有8位锁存、串一并移位寄存器和三态输出功能。每路最大可输出35mA的电流(不是恒流)。一般IC厂家都可生产此类芯片。

由于led是电流特性器件,即在饱和导通的前提下,其亮度随着电流大小的变化而变化,不是随着其两端电压的变化而变化。因此,专用芯片的一个最大特点是提供恒流源。恒流源可保证LED的稳定驱动,消除LED的闪烁现象。下面将重点介绍LED显示屏的专用驱动芯片存在的问题。

存在的问题

1、功耗及发热问题

由于输出电流较大,LED显示屏芯片的功耗和发热问题一直是阻扰驱动芯片发展的第一因素。在将来可能出现的手持式LED显示屏的驱动方式上,这个问题将会变得尤为突出。随着LED器件制造工艺水平的进步和驱动电流的减小,问题会逐步得到解决。

2、应用成本问题

一块主流16位稳态电流LED显示屏驱动芯片只能驱动16路的LED器件。一块分辨力为1024×768的LED显示屏就必须使用多块驱动芯片才能获得预期效果,这样就使得材料成本比较高。如果采用驱动芯片自身采用扫描方式,那么一块主流的驱动芯片就能一次驱动多路LED器件,将会使应用成本降低许多。

总结:

从这几家LED驱动芯片制造商的产品结构来看,目前主流芯片主要分为3个档次。第一档次是具有灰度机制的芯片,这类芯片内部具有PWM功能,可以根据输入的数据产生灰度,更易形成深层次灰度,显示高品质画面。第二档次是具有输出开路检测(LOD)、温度过热保护(TSD)、亮度调节功能的芯片,这些芯片由于有了附加功能而更适用于特定场合,如用于可变情报板,则要求芯片具有侦测LED错能。第三档为不带任何附加功能的恒流源芯片,此类芯片只为LED提供恒流源,保证屏体显示画面质量良好。

超低温情况下驱动IC损坏的原因
答:


针对LED显示模组的具体应用情况分析,在LED显示模组里,温度特性最差的是电解电容。目前,普通的电解电容一般标称值为零下40度,在零下40度或更低温度的时候,电解电容的特性会变得很差甚至会完全失效。这是由于在零下40度或更低温度的时候,电解电容的电解液粘度变大甚至会出现结晶现象。

正常情况下,LED模组上电压为5V, 在OE信号的开关作用下,电源电压会有波动,最高值在5.37V左右。而没有电解电容的LED模组,在OE信号的控制下,电源上出现很高的毛刺,最高电压达到10.8V甚至更高。这个电压已经大大超过了IC电源正常所允许的电压,目前的恒流源驱动的逻辑部分工作电压为5V,要求电源上不能出现超过7V的毛刺。高压毛刺会导致IC内部逻辑部分的MOS器件击穿,从而导致IC失效。

针对电容失效的问题,以下措施可解决问题。

1.针对特别寒冷的地区,模组上采用或加装 -55度的低温电解电容,这样在零下40-45度时(查阅气象资料,近年东北的部分区域,冬季最冷的时候最低温度在-40到-45度之间),电容仍能正常工作。另外,钽电容具有非常好的低温特性,针对气候寒冷地区的显示屏,可以在LED模组上加装1-2个钽电容,以保证低温下良好的滤波特性。

2.在显示屏内加装温控装置和空调或加热装置。温控系统确保显示屏在超低温状态下无法开机。在冬天严寒天气时,在显示屏开机之前,通过空调系统或加热装置,提前一段时间(1-2个小时),对显示屏内部进行加热,使屏内温度在零下25度以上,然后再打开显示屏电源。

3.在单元模组PCB上或电源接线柱上加一个瞬态电压抑制二极管(Transient Voltage Suppressor)简称TVS。TVS是一种二极管形式的高效能保护器件。当模组在超低温电容失效的情况下,TVS二极管能吸收高压毛刺,避免板上器件受到损坏。TVS二极管的钳位电压可以选择在7.0V左右。


LED产品光电性能的测试标准
答:

光电性能对于LED产品尤为重要,那么大家是否了解LED产品有哪些光电性能呢?下面我们一起来学习一下LED产品光电性能有哪些测试标准。

1.电特性

LED的电特性参数包括正向电流、正向电压、反向电流以及反向电压,该项测试一般是利用电压电流表进行测试,在恒流恒压源供电情况下。通过LED电特性的测试可获得最大允许正向电压、正向电流及反向电压、电流这些参数,此外,还可以获得LED的最佳工作电功率值。

2.光特性

主要包括光通量和光效、光强和光强分布特性以及光谱参数。

光通量和光效:通常有两种方法,为积分球法和变角光度计法。虽然后者的测试结果最为精确,但因耗时较长,一般采用前者。在用积分球法进行测试时,可以将被测LED放置在球心,也可以放置在球壁。测得光通量之后,配合电参数测试仪就可以测得LED的发光效率,也就是光效。

光强和光强分布特性:LED由于光强分布是不一致的,所以它的测试结果随测试距离和探测器孔径的大小变化而变化,可以让各个LED在同一条件下进行光强测试与评价,这样结果比较准确。

光谱参数:主要包括峰值发射波长、光谱辐射带宽和光谱功率分布等。LED的光谱特性都可由光谱功率分布表示,通过光谱功率分布,还可以得到色度参数。一般光谱功率分布的测试需要通过分光进行,将混合光中的单色光逐一区分出来进行测定,可采用棱镜和光栅实现分光。

3.开关特性

是指LED通电和断电瞬间的光、电、色变化特性,通过这项测试可以得到LED在通断电瞬间工作状态、物质属性等变化规律,从而了解通断电对LED的损耗。

4.颜色特性

主要有色品坐标、主波长、色纯度、色温和显色性等,测试方法有分光光度法和积分法。

分光光度法:通过单色仪分光测得LED光谱功率分布,然后利用色度加权函数积分获得对应的色度参数。

积分法:利用特定滤色片配合光电探测器直接测得色度参数。

5.热学特性

也指热阻和结温,热阻是指沿热流通道上的温度差与通道上耗散的功率之比,结温是指LED的PN结温度。LED结温的测试方法有两种,一种是采用红外测温显微镜或微型热偶测得LED芯片的表面温度,另一种是利用确定电流下的正向偏压与结温之间反比变化的关系来判定LED的结温。

LED芯片技术更新启示录
答:

河南快3了/upload/file/20150506/20150506174652055205.docx

首页 上一页 1 2 3 下一页 尾页
 
地址:深圳市宝安区石岩街道石龙社区恒昌荣工业园1栋6楼B区
电话:4006 511 882
2010-2015 © Copyright 深圳市艾森达科技有限公司    粤ICP备15012945号